Dual-phase high-entropy ultra-high temperature ceramics
نویسندگان
چکیده
منابع مشابه
High Temperature Behavior of Dual Phase Steels
Dual phase steels with different martensite volume fraction and morphology were tensile tested at a temperature range of 25 to 5500C. Stress-strain curves of all steels showed serration flow at temperatures of 250 and 3500C, and smooth flow at the other temperatures. Both yield and ultimate tensile strengths increased with increasing testing temperature up to about 450<sup...
متن کاملhigh temperature behavior of dual phase steels
dual phase steels with different martensite volume fraction and morphology were tensile tested at a temperature range of 25 to 5500c. stress-strain curves of all steels showed serration flow at temperatures of 250 and 3500c, and smooth flow at the other temperatures. both yield and ultimate tensile strengths increased with increasing testing temperature up to about 4500c and then decreased at h...
متن کاملUltra High Temperature Ceramics: Densification, Properties and Thermal Stability
Hypersonic flights, re-entry vehicles, and propulsion applications all require new materials that can perform in oxidizing or corrosive atmospheres at temperatures in excess of 2000°C and sometimes over the course of a long working life. Ultra High Temperature Ceramics (UHTCs) are good candidates to fulfill these requirements. Within this family, the ZrB2 and HfB2 based composites are the most ...
متن کاملUltra-refractory ceramics for high-temperature solar absorbers
It is well known that the efficiency of thermodynamic solar plants increases with the working temperature. At present the main limit in temperature upscaling is the absorber capability to withstand high temperatures. The ideal solar absorber works at high temperatures, has a low thermal emissivity and a high absorptivity in the solar spectral range . The paper reports on the high temperature em...
متن کاملUltra-High Temperature Ceramics for solar receivers: spectral and high-temperature emittance characterization
We report on the preparation, room temperature spectral reflectance and high-temperature thermal emittance characterization of different boride and carbide Ultra-High Temperature Ceramics (UHTCs). The investigated samples are compared with a reference material for solar absorber applications, i.e. silicon carbide. We show that spectral and thermal emittance properties of UHTCs are promising for...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the European Ceramic Society
سال: 2020
ISSN: 0955-2219
DOI: 10.1016/j.jeurceramsoc.2020.05.040